Detecting Misspecifications in Autoregressive Conditional Duration Models via Generalized Spectrum
نویسندگان
چکیده
We propose a class of specification tests for Autoregressive Conditional Duration (ACD) models that are robust to time-varying conditional dispersion and higher order conditional moments of unknown form. Both linear and nonlinear ACD models are covered. No specific estimation method is required, and the tests have a convenient null asymptotic N(0,1) distribution. To reduce the impact of parameter estimation uncertainty in finite samples, we adopt Wooldridge’s (1990a) device and justify its validity. Simulation studies show that the finite sample correction gives better sizes in finite samples and are robust to parameter estimation uncertainty. Also, it is important to take into account time-varying conditional dispersion and higher order conditional moments; failure to do so can cause overrejection of a correctly specified ACD model. The proposed tests have reasonable power against a variety of ACD alternatives.
منابع مشابه
Testing the Conditional Mean Function of Autoregressive Conditional Duration Models
In this paper, we suggest and evaluate specification tests to test the validity of the conditional mean function implied by Autoregressive Conditional Duration (ACD) models. We propose Lagrange multiplier tests against sign bias alternatives, various types of conditional moment tests and integrated conditional moment tests which are consistent against all possible alternatives. In a Monte-Carlo...
متن کاملComparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملExponential Conditional Volatility Models
The asymptotic distribution of maximum likelihood estimators is derived for a class of exponential generalized autoregressive conditional heteroskedasticity (EGARCH) models. The result carries over to models for duration and realised volatility that use an exponential link function. A key feature of the model formulation is that the dynamics are driven by the score. Keywords: Duration models; g...
متن کاملSTAT 4 : Advanced Time
4. Course Outline: (i) Review of Linear ARMA/ARIMA Time Series Models and their Properties. (ii) An Introduction to Spectral Analysis of Time Series. (iii) Fractional Differencing and Long Memory Time Series Modelling. (iv) Generalized Fractional Processes. Gegenbaur Processes. (v) Topics from Financial Time Series/Econometrics: ARCH and GARCH Models. (vi ) Time Series Modelling of Durations: A...
متن کاملInference on Predictability of Foreign Exchange Rates via Generalized Spectrum and Nonlinear Time Series Models
It is often documented, based on autocorrelation, variance ratio and power spectrum, that exchange rates approximately follow a martingale process. Because autocorrelation, variance ratio and spectrum check serial uncorrelatedness rather than martingale difference, they may deliver misleading conclusions in favor of the martingale hypothesis when the test statistics are insigniÞcant. In this pa...
متن کامل